Logotipo del repositorio
Comunidades
Todo DSpace
Acerca del Repositorio
Reglamento del RepositorioFormato de AutorizaciónMetadatos Obligatorios
Estadísticas Externas
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Quispe Galindo, Lucy"

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 1 de 1
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Modelo de predicción climatológica con inteligencia artificial (AI) en la región Ica, 2022
    (Universidad Nacional San Luis Gonzaga, 2024) Quispe Galindo, Lucy; Córdova Mendoza, Pedro
    Este estudio se propuso “establecer el modelamiento de los parámetros meteorológicos que mediante inteligencia artificial contribuye significativamente en el clima en el Centro de Investigación del Estudio de la Actividad Solar y sus Efectos Sobre la Tierra, Ica, 2019-2022”. Estrategia metodológica adoptada siguió la estructura CRISP-DM y comprendió la preparación de datos, análisis de la temperatura, aplicación de modelos ARIMA y VAR para predicción meteorológica, y evaluación de la eficacia de los modelos. Resultados, destacaron la presencia de datos faltantes, cuya imputación fue esencial para mantener la integridad temporal del conjunto de datos. La aplicación de modelos ARIMA y VAR mostró que ARIMA superó en precisión a VAR en varias métricas de evaluación. Discusión, se centró en la importancia de abordar los datos faltantes y la necesidad de explorar modelos más avanzados. Conclusión, resalta la aplicabilidad de la inteligencia artificial en la predicción climática y sugiere la implementación de sistemas de alerta temprana, con el propósito de enriquecer la gestión de riesgos climáticos en la región de Ica. ----- This study aimed to establish the modeling of meteorological parameters that, through artificial intelligence, contribute significantly to the climate at the Research Center for the Study of Solar Activity and its Effects on the Earth, Ica, 2019-2022. Methodological strategy adopted followed the CRISP-DM structure and included data preparation, temperature analysis, application of ARIMA and VAR models for weather prediction, and evaluation of the effectiveness of the models. Results, highlighted the presence of missing data, whose imputation was essential to maintain the temporal integrity of the data set. The application of ARIMA and VAR models showed that ARIMA outperformed VAR in accuracy in several evaluation metrics. Discussion, focused on the importance of addressing missing data and the need to explore more advanced models. Conclusion, highlights the applicability of artificial intelligence in climate prediction and suggests the implementation of early warning systems, with the aim of improving climate risk management in the Ica region.

Contacto

Rectorado: Prolog. Ayabaca C-9 Urb. San José - Ica.Ciudad Universitaria: Av. Los Maestros S/N - Ica.Local Central: Calle Bolivar 232 - Ica.Correo electrónico: repositorio@unica.edu.pe

Sitios de Interes

Logo AliciaLogo La ReferenciaLogo Google Scholar